CARBayesSTReport.Rmd
Detection of outliers in time courses of an experiment in PhenoArch greenhouse. In this vignette, we use a toy data set of the openSilexStatR library (anonymized real data set).
Please, have a look on the names of the columns of the input data set. The function is not generic and needs specific columns names in the input data set:
The example is conducted on plantHeight parameter, we modelise the plantHeight taking into account the temporality (thermal time) and the spatiality (lattice structure) with a bayesian spatio-temporal ANOVA model [3].
To detect outlier points, we retrieve the standardised residuals computed by the model and a point is an outlier if abs(res) > threshold (here threshold==4). the user will be able to change this threshold.
We produced the output of the model as well as some graphics.
The input dataset must contain some predefined columns, have a look to the structure of mydata:
library(lubridate) library(dplyr) library(openSilexStatR) myReport<-substr(now(),1,10) mydata<-plant1 str(mydata)
## 'data.frame': 47022 obs. of 14 variables:
## $ Ref : Factor w/ 1680 levels "manip1_10_10_WW",..: 131 131 131 131 131 131 131 131 131 131 ...
## $ experimentAlias: Factor w/ 1 level "manip1": 1 1 1 1 1 1 1 1 1 1 ...
## $ Day : Factor w/ 42 levels "2013-02-01","2013-02-02",..: 3 4 5 6 7 9 9 10 11 12 ...
## $ potAlias : int 1 1 1 1 1 1 1 1 1 1 ...
## $ scenario : Factor w/ 2 levels "WD","WW": 2 2 2 2 2 2 2 2 2 2 ...
## $ genotypeAlias : Factor w/ 274 levels "11430_H","A310_H",..: 165 165 165 165 165 165 165 165 165 165 ...
## $ repetition : int 1 1 1 1 1 1 1 1 1 1 ...
## $ Line : int 1 1 1 1 1 1 1 1 1 1 ...
## $ Position : int 1 1 1 1 1 1 1 1 1 1 ...
## $ thermalTime : num 1.29 2.65 3.98 5.32 6.66 ...
## $ plantHeight : num 140 151 213 239 271 ...
## $ leafArea : num 0.018 0.019 0.0208 0.0222 0.0235 ...
## $ biovolume : num 0.253 0.62 1.201 1.68 3.396 ...
## $ Repsce : Factor w/ 15 levels "1_WD","1_WW",..: 2 2 2 2 2 2 2 2 2 2 ...
A bayesian approach to model these data where the spatio-temporal structure is modelled via sets of autocorrelated random effets. Conditional autoregressive (CAR) priors and spatio-temporal extensions thereof are typically assigned to these random effects to capture the autocorrelation, which are special cases of a Gaussian Markov random Filed (GMRF) [3].
ST.CARanova() decomposes the spatio-temporal variation into 3 components:
we can add others factors (here the scenario (quali) …)
The spatio-temporal auto-correlation is modelled by a common set of spatial random effect and a common set of temporal random effects and both are modelled by the CAR prior (Conditional AutoRegressive).
Description of the results’s table:
Model fit criteria
In model’s comparison, the best fitting model is the one that minimises the DIC and WAIC but maximises the LMPL.
As the bayesian model can take a while, in this example, we initialise burnin=10 and n.sample=110 - not enough in real analysis!
# We suppress observations with missing data in time variable (here thermalTime) mydata<-filter(mydata,!is.na(mydata$thermalTime)) model<-fitCARBayesST(datain=mydata,xvar="thermalTime",trait="plantHeight",k=2, graphDist=TRUE,burnin=10,n.sample=110, formulaModel=as.formula(plantHeight~scenario+genotypeAlias),typeModel="anova",verbose=TRUE)
## [1] 22.35558
## Setting up the model.
## Generating 100 post burnin and thinned (if requested) samples.
##
|
| | 0%
|
|= | 1%
|
|= | 2%
|
|== | 3%
|
|=== | 4%
|
|==== | 5%
|
|==== | 6%
|
|===== | 7%
|
|====== | 8%
|
|====== | 9%
|
|======= | 10%
|
|======== | 11%
|
|======== | 12%
|
|========= | 13%
|
|========== | 14%
|
|========== | 15%
|
|=========== | 16%
|
|============ | 17%
|
|============= | 18%
|
|============= | 19%
|
|============== | 20%
|
|=============== | 21%
|
|=============== | 22%
|
|================ | 23%
|
|================= | 24%
|
|================== | 25%
|
|================== | 26%
|
|=================== | 27%
|
|==================== | 28%
|
|==================== | 29%
|
|===================== | 30%
|
|====================== | 31%
|
|====================== | 32%
|
|======================= | 33%
|
|======================== | 34%
|
|======================== | 35%
|
|========================= | 36%
|
|========================== | 37%
|
|=========================== | 38%
|
|=========================== | 39%
|
|============================ | 40%
|
|============================= | 41%
|
|============================= | 42%
|
|============================== | 43%
|
|=============================== | 44%
|
|================================ | 45%
|
|================================ | 46%
|
|================================= | 47%
|
|================================== | 48%
|
|================================== | 49%
|
|=================================== | 50%
|
|==================================== | 51%
|
|==================================== | 52%
|
|===================================== | 53%
|
|====================================== | 54%
|
|======================================= | 55%
|
|======================================= | 56%
|
|======================================== | 57%
|
|========================================= | 58%
|
|========================================= | 59%
|
|========================================== | 60%
|
|=========================================== | 61%
|
|=========================================== | 62%
|
|============================================ | 63%
|
|============================================= | 64%
|
|============================================== | 65%
|
|============================================== | 66%
|
|=============================================== | 67%
|
|================================================ | 68%
|
|================================================ | 69%
|
|================================================= | 70%
|
|================================================== | 71%
|
|================================================== | 72%
|
|=================================================== | 73%
|
|==================================================== | 74%
|
|==================================================== | 75%
|
|===================================================== | 76%
|
|====================================================== | 77%
|
|======================================================= | 78%
|
|======================================================= | 79%
|
|======================================================== | 80%
|
|========================================================= | 81%
|
|========================================================= | 82%
|
|========================================================== | 83%
|
|=========================================================== | 84%
|
|============================================================ | 85%
|
|============================================================ | 86%
|
|============================================================= | 87%
|
|============================================================== | 88%
|
|============================================================== | 89%
|
|=============================================================== | 90%
|
|================================================================ | 91%
|
|================================================================ | 92%
|
|================================================================= | 93%
|
|================================================================== | 94%
|
|================================================================== | 95%
|
|=================================================================== | 96%
|
|==================================================================== | 97%
|
|===================================================================== | 98%
|
|===================================================================== | 99%
|
|======================================================================| 100%
## Summarising results.
## Finished in 138.8 seconds.
## used (Mb) gc trigger (Mb) max used (Mb)
## Ncells 3642614 194.6 5520292 294.9 3642614 194.6
## Vcells 67027796 511.4 212701377 1622.8 67027796 511.4
# print the result of the bayesian modelling printCARBayesST(modelin=model[[1]])
## Median 2.5% 97.5% Geweke.diag
## (Intercept) 789.1258 769.8793 809.8913 -2.3
## scenarioWW 5.0597 0.8237 8.4879 -1.8
## genotypeAliasA310_H -31.6065 -53.5133 -10.8240 -0.7
## genotypeAliasA347 -291.4734 -346.1374 -259.5544 2.0
## genotypeAliasA347_H -9.4935 -35.1732 32.5818 3.7
## genotypeAliasA374_H 62.2399 24.6144 92.4539 0.6
## genotypeAliasA375_H 94.3326 76.7937 117.1912 -3.6
## genotypeAliasA3_H 84.8671 53.7670 100.8658 1.4
## genotypeAliasA554_H -71.3099 -101.7732 -38.5134 1.8
## genotypeAliasAS5707_H 38.1778 3.7827 67.4886 0.6
## genotypeAliasB100_H 23.8927 -10.7963 58.7000 3.3
## genotypeAliasB104_H -36.1082 -76.1128 2.5110 0.0
## genotypeAliasB105_H -45.0814 -75.0145 -18.0219 0.0
## genotypeAliasB106_H 40.6225 5.8670 82.8446 -0.2
## genotypeAliasB107_H -65.6608 -100.2115 -40.4276 -0.3
## genotypeAliasB108_H 37.3071 -26.5343 69.7652 -12.3
## genotypeAliasB109_H 27.1687 4.9619 59.8399 -2.3
## genotypeAliasB110_H -34.1206 -71.1262 5.3274 0.4
## genotypeAliasB113_H 25.3901 -28.1445 64.6275 1.4
## genotypeAliasB14a_H -87.2072 -111.0793 -49.4009 5.6
## genotypeAliasB37_H -44.5693 -86.6378 -15.8982 0.5
## genotypeAliasB73 -156.9179 -196.9022 -110.0927 1.6
## genotypeAliasB73_H 16.5924 -18.5922 50.5890 2.3
## genotypeAliasB73_SILK -13.6384 -39.6926 23.5033 -1.3
## genotypeAliasB84_H -0.5810 -49.5477 38.6836 -1.3
## genotypeAliasB89_H -31.2775 -80.3974 5.0282 -3.8
## genotypeAliasB97_H 90.6655 40.2888 123.8072 0.3
## genotypeAliasB98_H -85.2713 -106.2585 -53.9576 0.2
## genotypeAliasC103_H 5.0336 -37.4723 27.2470 1.1
## genotypeAliasCO109_H -1.6207 -29.9578 27.8305 0.1
## genotypeAliasCR1Ht_H 10.9217 -16.5854 53.2746 0.5
## genotypeAliasD09_H 29.3918 -15.9286 49.9769 -7.5
## genotypeAliasDE811_H -90.6326 -108.4585 -59.8798 -0.1
## genotypeAliasDK2MA22_H 81.5465 58.6133 106.6624 -0.1
## genotypeAliasDK4676A_H -36.0684 -66.4866 13.7882 -0.8
## genotypeAliasDK78010_H -61.9133 -86.8355 -19.3594 -0.2
## genotypeAliasDK78371A_H 1.7957 -21.5624 15.6482 1.7
## genotypeAliasDKFAPW_H -25.0512 -45.8046 11.8085 -1.7
## genotypeAliasDKFBHJ_H 47.5936 16.6545 84.8306 0.3
## genotypeAliasDKIBO2_H -7.8186 -29.5641 16.4004 3.4
## genotypeAliasDKMBST_H 102.3405 73.5257 129.6724 -2.5
## genotypeAliasEA1027_H 52.0809 5.1974 83.5798 -2.1
## genotypeAliasEA1163_H -5.2095 -42.5073 32.8080 -3.0
## genotypeAliasEA3076_H -18.9045 -53.2195 11.2809 -1.7
## genotypeAliasEC136_H -18.8040 -41.5599 -1.4261 -0.8
## genotypeAliasEC140_H -73.8020 -98.5111 -53.7462 -3.8
## genotypeAliasEC151_H -68.5053 -125.2913 -43.3861 -3.5
## genotypeAliasEC169_H -16.3148 -45.7585 4.7795 0.9
## genotypeAliasEC175_H -53.2710 -83.6437 -36.5791 -1.8
## genotypeAliasEC232_H -20.0695 -70.0898 -2.3298 -1.3
## genotypeAliasEC242C_H 26.9978 -32.6042 64.7961 2.7
## genotypeAliasEC334_H -76.6495 -102.1347 -52.0159 0.4
## genotypeAliasEP10_H 46.6883 19.3753 76.0120 0.4
## genotypeAliasEP2008-18_H 33.9042 -6.1957 53.0412 1.2
## genotypeAliasEP2008-22_H 11.4261 -24.6468 35.9063 2.4
## genotypeAliasEP29_H -59.8603 -81.1789 -32.7272 -1.1
## genotypeAliasEP51_H -33.1826 -90.4161 9.5249 -2.8
## genotypeAliasEP52_H 7.5433 -7.7806 34.5417 -1.4
## genotypeAliasEP55_H -132.6336 -158.0428 -108.6033 4.1
## genotypeAliasEP67_H 0.6530 -25.7210 51.2536 -0.7
## genotypeAliasEP72_H 27.4721 -14.9591 49.0887 0.7
## genotypeAliasEP77_H 99.5765 64.2801 136.7359 0.3
## genotypeAliasEZ11A_H -39.2953 -86.3965 -13.1856 1.5
## genotypeAliasEZ18_H 26.0612 1.0650 57.3930 -0.6
## genotypeAliasEZ31_H 60.4100 21.1816 96.4638 -1.5
## genotypeAliasEZ34_H -48.1943 -79.7719 -1.5748 -1.6
## genotypeAliasEZ35_H -14.6472 -45.5773 22.2358 -4.1
## genotypeAliasEZ36_H -45.0150 -83.9646 1.2946 5.1
## genotypeAliasEZ37_H -32.2826 -55.0748 -4.7252 0.0
## genotypeAliasEZ38_H -22.0290 -53.7416 7.4692 -0.2
## genotypeAliasEZ40_H -70.9698 -112.1738 -43.9648 -1.9
## genotypeAliasEZ42_H -52.2353 -79.6463 -23.0109 -0.7
## genotypeAliasEZ47_H 62.6740 24.0514 87.8071 -0.1
## genotypeAliasEZ48_H 14.0183 -22.0985 48.2011 -0.7
## genotypeAliasEZ53_H -74.1028 -102.6507 -30.1623 -3.9
## genotypeAliasEZ5_H 26.7060 6.9257 61.0339 0.7
## genotypeAliasF04401_H -31.4035 -53.2366 -4.4456 0.4
## genotypeAliasF04402_H -77.5216 -112.2109 -54.3325 -0.4
## genotypeAliasF04701_H -28.7023 -58.0293 -0.0631 -1.5
## genotypeAliasF04702_H 27.6270 0.7867 51.2064 -2.5
## genotypeAliasF05101_H 80.4315 42.9681 111.0378 0.5
## genotypeAliasF05404_H 46.6131 17.8816 70.9081 -1.0
## genotypeAliasF1808_H -9.8075 -43.2317 9.7917 4.6
## genotypeAliasF1890_H 41.2684 -0.7654 79.9087 -2.5
## genotypeAliasF218_H -33.0417 -69.6055 -6.3558 -4.7
## genotypeAliasF252_H 70.4609 22.6894 93.5266 -5.4
## genotypeAliasF353 -124.3517 -198.2351 -86.9601 1.8
## genotypeAliasF353_H 99.5496 68.3792 140.9172 3.0
## genotypeAliasF354_H 17.5394 -30.6944 41.7917 1.9
## genotypeAliasF584_H -39.1503 -80.8775 -11.1845 -1.7
## genotypeAliasF608_H 34.5193 -0.7889 78.4127 -2.9
## genotypeAliasF618_H -10.0301 -40.8263 28.4285 0.4
## genotypeAliasF7001_H -20.3955 -56.5213 12.8960 -0.3
## genotypeAliasF7019_H 34.3594 -1.1819 59.3596 -0.9
## genotypeAliasF7025_H -48.6501 -78.0695 -11.1032 0.4
## genotypeAliasF7028_H 38.9339 17.0080 65.9701 0.9
## genotypeAliasF7057_H 5.2002 -20.8543 32.6682 1.9
## genotypeAliasF7058_H 21.3338 -36.0228 53.9361 -2.0
## genotypeAliasF7081_H 53.5041 17.0029 86.4948 0.9
## genotypeAliasF7082_H 45.9980 9.0246 72.3844 1.0
## genotypeAliasF712_H 75.2930 38.2709 103.3222 -1.6
## genotypeAliasF748_H -56.4360 -108.0607 -31.7268 -3.7
## genotypeAliasF752_H -22.8158 -56.9289 28.5490 -2.5
## genotypeAliasF816_H 27.3965 0.4608 52.8988 -2.4
## genotypeAliasF838_H -22.8282 -62.5700 14.6101 0.3
## genotypeAliasF874_H 29.7280 -36.0930 65.5741 -5.0
## genotypeAliasF888_H 50.5120 6.4823 92.5947 0.1
## genotypeAliasF894_H -85.6167 -117.2810 -39.4607 -0.5
## genotypeAliasF908_H -37.8413 -66.3360 -15.1863 1.1
## genotypeAliasF912_H 49.6091 21.6496 69.8835 0.3
## genotypeAliasF918_H 11.9352 -17.3708 41.2382 -1.1
## genotypeAliasF922_H 152.2907 111.4490 183.0062 -4.6
## genotypeAliasF924 -213.2465 -269.3964 -182.3181 2.5
## genotypeAliasF924_H 40.2170 -0.5559 80.3479 5.7
## genotypeAliasF924_SILK -27.5185 -60.0102 -0.7748 -1.3
## genotypeAliasF98902_H 96.6630 42.7745 152.4120 -0.7
## genotypeAliasFP1_H 86.6334 36.6928 143.2701 -2.2
## genotypeAliasFR19_H 4.4358 -29.7473 33.8558 -1.8
## genotypeAliasH99_H 3.2519 -47.0806 24.3061 -7.8
## genotypeAliasHMV5301_H 137.5422 72.9638 173.1583 -3.4
## genotypeAliasHMV5325_H 6.5179 -13.0006 31.6095 4.1
## genotypeAliasHMV5343_H -44.8345 -72.8181 -21.8152 -0.5
## genotypeAliasHMV5347_H 13.0434 -9.0695 46.6929 0.6
## genotypeAliasHMV5405_H 66.7004 43.8041 96.0180 -2.2
## genotypeAliasHMV5409_H -58.1978 -85.3125 -37.1883 -2.9
## genotypeAliasHMV5422_H 32.6197 9.1898 58.0357 3.9
## genotypeAliasHMV5502_H -71.4391 -108.4259 -44.0211 -4.7
## genotypeAliasI198_H 21.3798 -19.2664 59.5909 -1.9
## genotypeAliasI205_H -120.5309 -156.3450 -87.8246 1.4
## genotypeAliasI211_H 25.6355 -4.0933 43.6974 2.2
## genotypeAliasI233_H -23.1715 -50.5330 1.5354 -0.8
## genotypeAliasI238_H -89.2717 -126.1546 -50.6716 -1.4
## genotypeAliasI242_H -35.4572 -73.0912 3.3589 0.0
## genotypeAliasI261_H -23.7325 -52.1576 -2.8900 3.4
## genotypeAliasI267_H 47.5455 22.7703 94.8904 0.3
## genotypeAliasIDT_H 3.8472 -40.0197 45.8599 -2.5
## genotypeAliasLAN496_H 0.6580 -49.7522 17.8352 0.0
## genotypeAliasLH123Ht_H 44.4655 18.5920 79.5700 0.5
## genotypeAliasLH145_H -70.7817 -126.0444 -24.1837 -1.3
## genotypeAliasLH38 -153.4844 -177.0984 -116.9854 2.5
## genotypeAliasLH38_H 40.8373 1.5949 69.2436 1.7
## genotypeAliasLH39_H 14.7957 -26.6671 53.0947 -2.5
## genotypeAliasLH59_H -17.9935 -59.2416 31.4904 -2.5
## genotypeAliasLH60_H -30.6832 -80.3048 1.2492 -6.5
## genotypeAliasLH65_H -34.3487 -69.3386 12.9737 -1.4
## genotypeAliasLH74_H -89.9754 -134.8108 -64.6637 -0.4
## genotypeAliasLH82_H -19.6203 -46.2276 12.7282 0.1
## genotypeAliasLH93_H 29.9592 -26.5677 54.6645 -5.6
## genotypeAliasLo1016_H 34.2114 -2.3664 93.5648 -1.3
## genotypeAliasLo1026_H 5.6793 -14.6983 44.3973 1.1
## genotypeAliasLo1035_H -28.3909 -49.7111 -8.5025 -1.4
## genotypeAliasLo1038_H -45.6067 -95.2249 -13.1987 1.0
## genotypeAliasLo1056_H 24.2675 -3.3063 42.9484 -1.6
## genotypeAliasLo1063_H -30.9128 -52.9641 -3.9237 4.6
## genotypeAliasLo1087_H -87.5644 -110.5211 -62.6698 2.9
## genotypeAliasLo1094_H 37.9743 10.6036 65.4601 -0.4
## genotypeAliasLo1095_H 21.1853 -0.3556 51.3739 4.0
## genotypeAliasLo1101_H -38.1653 -83.2291 -1.6888 -3.7
## genotypeAliasLo1106_H -51.8947 -74.3595 -23.4128 1.8
## genotypeAliasLo1123_H 21.7625 -16.4428 73.3661 -1.4
## genotypeAliasLo1124_H 6.4539 -13.9844 29.3269 10.7
## genotypeAliasLo1130_H -30.5914 -61.0278 2.4594 -3.4
## genotypeAliasLo1172_H 99.5022 76.0300 127.6428 0.8
## genotypeAliasLo1180_H 32.2811 11.6327 67.3551 -0.2
## genotypeAliasLo1187_H -37.0427 -76.3774 -16.7685 -1.9
## genotypeAliasLo1199_H -27.2459 -51.9899 -8.5974 1.3
## genotypeAliasLo1203_H -19.8831 -43.6734 18.7033 -1.7
## genotypeAliasLo1223_H 36.6878 20.3723 61.2374 1.1
## genotypeAliasLo1242_H -11.7999 -37.4610 17.4032 5.9
## genotypeAliasLo1251_H -4.1314 -43.1800 17.0810 -2.7
## genotypeAliasLo1253_H 2.5724 -32.1332 44.7378 -1.6
## genotypeAliasLo1261_H -43.3077 -73.7736 -11.0536 2.9
## genotypeAliasLo1266_H 59.7490 1.5616 89.9647 2.3
## genotypeAliasLo1270_H 56.2168 22.8268 80.3427 0.7
## genotypeAliasLo1273_H 48.8018 25.7510 110.9303 -0.5
## genotypeAliasLo1274_H 117.1753 81.0150 138.2785 -0.6
## genotypeAliasLo1280_H 54.8899 -10.2374 91.8791 -7.3
## genotypeAliasLo1282_H 47.6600 11.0182 68.8865 -2.1
## genotypeAliasLo1284_H 21.8834 -29.9086 48.1765 -1.9
## genotypeAliasLo1288_H -45.8825 -76.9416 -17.3575 0.1
## genotypeAliasLo1290_H 77.0138 52.6216 105.5618 2.2
## genotypeAliasLo1301_H -3.0395 -33.9849 40.4051 -0.5
## genotypeAliasLo904_H -48.7885 -64.3949 -21.4116 0.9
## genotypeAliasLp5_H -11.7427 -48.4239 30.8460 -0.5
## genotypeAliasML606_H 41.2114 -3.4566 75.8595 0.3
## genotypeAliasMo15W_H 29.1897 -2.4116 54.2159 -2.6
## genotypeAliasMo17 -311.3684 -348.9074 -268.7304 2.8
## genotypeAliasMo17_H 59.4307 17.8201 90.1305 1.3
## genotypeAliasMS153 -121.9660 -159.1261 -86.5114 3.2
## genotypeAliasMS153_H 48.2897 24.8366 86.1983 2.2
## genotypeAliasMS153_SILK 38.6684 7.3362 65.3203 -0.7
## genotypeAliasMS71_H -29.9832 -65.2146 4.9583 -2.5
## genotypeAliasN16_H 4.9523 -32.6605 45.1150 0.1
## genotypeAliasN192_H -32.9331 -56.1907 -9.8912 1.9
## genotypeAliasN22_H -67.5221 -105.8310 -46.4097 -9.5
## genotypeAliasN25_H -46.7615 -69.9110 -17.5418 0.0
## genotypeAliasN6_H -22.4501 -70.6346 6.9199 -0.2
## genotypeAliasNC290_H -41.8737 -82.0667 -26.1801 1.4
## genotypeAliasNC358_H -52.6064 -91.5945 -21.7539 3.7
## genotypeAliasNDB8_H 42.6665 5.3934 78.4731 -0.5
## genotypeAliasNK764_H -27.3230 -63.5093 -7.2848 -0.5
## genotypeAliasNK807_H -4.3148 -40.7752 34.7281 -1.8
## genotypeAliasNQ508_H -0.0257 -49.4275 30.8960 0.2
## genotypeAliasNS501_H 14.9110 -26.0980 40.1399 0.2
## genotypeAliasNS701_H 38.3863 -4.7684 82.5674 -2.3
## genotypeAliasOh02_H 8.4133 -17.7441 45.2999 5.4
## genotypeAliasOh33_H 9.0987 -24.5244 37.5531 -1.2
## genotypeAliasOh40B_H -32.4969 -56.8538 -17.5267 2.2
## genotypeAliasOh43 -207.9746 -236.1118 -151.4323 8.2
## genotypeAliasOh43_H 137.6866 97.1757 170.0401 6.0
## genotypeAliasOh43_SILK 62.9806 25.4393 83.5422 -4.1
## genotypeAliasOs426_H -58.0389 -76.4178 -25.7680 3.6
## genotypeAliasP465P_H -24.3036 -77.1944 16.6073 -1.2
## genotypeAliasPa35_H -55.1760 -97.7421 -30.5173 -0.9
## genotypeAliasPa36_H -15.7666 -41.7581 8.4925 1.1
## genotypeAliasPa374_H -13.4556 -48.2506 39.6466 -0.9
## genotypeAliasPa405_H -10.9355 -39.2599 21.7862 -1.0
## genotypeAliasPa91_H 79.0610 34.4282 124.5759 -4.7
## genotypeAliasPB116_H 31.9436 -10.5747 54.4968 -4.9
## genotypeAliasPB98TR_H -29.5586 -60.5039 -8.0206 -5.0
## genotypeAliasPH207_H -93.3195 -127.1792 -71.9081 -1.6
## genotypeAliasPHB09_H -46.7440 -79.0350 -20.1476 -6.8
## genotypeAliasPHG35_H 60.6127 6.1538 82.8289 -3.5
## genotypeAliasPHG39_H 28.2011 -7.1656 59.7728 -1.7
## genotypeAliasPHG47_H 82.1234 10.0487 116.0044 -4.3
## genotypeAliasPHG50_H 59.7727 31.6362 100.0496 0.2
## genotypeAliasPHG71_H 21.9966 -25.1502 52.7295 -2.2
## genotypeAliasPHG80_H -53.9288 -95.1778 -20.7154 0.4
## genotypeAliasPHG83_H -73.0015 -122.4170 -51.9958 0.2
## genotypeAliasPHG84_H 90.0107 68.0902 118.5824 -1.4
## genotypeAliasPHG86_H -20.3597 -73.7470 7.3174 -2.8
## genotypeAliasPHH93_H 43.9510 -18.2044 69.9202 -5.9
## genotypeAliasPHJ40_H 94.4187 70.6233 115.8367 2.6
## genotypeAliasPHK29_H 40.6430 12.1787 86.6364 -0.8
## genotypeAliasPHK76_H 5.6263 -18.3114 39.2293 -0.8
## genotypeAliasPHR36_H 96.0153 37.4911 138.8841 -4.5
## genotypeAliasPHT77_H 59.3523 42.3303 86.8147 1.0
## genotypeAliasPHV63_H 56.4534 28.0692 81.7999 -2.8
## genotypeAliasPHW65_H -0.7724 -44.9244 24.3476 -5.9
## genotypeAliasPHZ51_H 117.2205 87.8109 149.9307 -1.1
## genotypeAliasPP147_H 21.3939 -32.8841 54.2785 1.8
## genotypeAliasSC-Malawi_H -10.1327 -38.6521 17.7138 0.6
## genotypeAliasUH_2500_H -6.3234 -34.6501 37.2207 -0.5
## genotypeAliasUH250_H 70.8540 40.8624 96.9486 -0.7
## genotypeAliasUH304_H -46.4057 -105.7144 -16.6218 -2.6
## genotypeAliasUH_6102_H 24.2133 2.7987 56.3390 -0.3
## genotypeAliasUH_6179_H -51.0781 -87.7474 -24.2470 -1.6
## genotypeAliasUH_P024_H -132.9016 -157.4648 -93.0016 4.2
## genotypeAliasUH_P060_H 37.8416 -0.1161 77.6244 -4.1
## genotypeAliasUH_P064_H 12.8759 -23.6575 34.2524 2.4
## genotypeAliasUH_P074_H -65.5361 -98.2608 -43.0155 2.8
## genotypeAliasUH_P087_H -36.2252 -56.0842 -6.4146 1.0
## genotypeAliasUH_P089_H 17.0583 -3.6671 46.8271 -1.9
## genotypeAliasUH_P104_H 103.0462 65.4691 132.6336 -4.5
## genotypeAliasUH_P115_H 85.5897 61.1030 111.4937 0.4
## genotypeAliasUH_P128_H 78.8203 50.5082 113.9136 -1.9
## genotypeAliasUH_P148_H -30.2066 -64.6634 -3.2706 -2.2
## genotypeAliasUH_S018_H -8.3702 -28.9768 12.2129 -1.5
## genotypeAliasUH_S020_H -45.7264 -97.2854 -13.8611 -2.7
## genotypeAliasUH_S025_H 82.7534 49.9840 108.8224 -2.6
## genotypeAliasVa26_H 43.8857 19.3223 75.1117 2.9
## genotypeAliasW117 -144.4556 -194.3770 -86.2115 3.7
## genotypeAliasW117_H 128.1677 86.0450 173.1891 2.1
## genotypeAliasW153R_H -45.7736 -86.4146 -20.0249 -5.3
## genotypeAliasW182E_H -14.7338 -31.4863 6.9002 0.5
## genotypeAliasW23_H 17.5847 -23.1603 49.1260 -2.7
## genotypeAliasW602S_H 26.3704 -3.3642 49.9855 -1.6
## genotypeAliasW604S_H -51.7390 -88.5164 -24.1534 0.5
## genotypeAliasW64A_H -60.4985 -86.3283 -36.6257 -0.6
## genotypeAliasW9 -474.3791 -533.2429 -433.1502 0.0
## genotypeAliasW95115_H 31.1635 -15.3837 49.6413 -1.1
## genotypeAliasW9_H -39.7016 -103.1672 4.9525 1.8
## genotypeAliasWf9_H 139.4442 124.3776 170.3892 0.8
## genotypeAliasX061_H 60.9865 36.8142 88.0306 -1.4
## genotypeAliasX697_H 33.9312 5.0678 61.6646 -1.9
## tau2.S 4625.3717 2713.7318 5144.0853 -5.6
## tau2.T 11305.8163 2148.5654 45679.4499 20.5
## nu2 6303.3624 6165.8336 9365.4338 2.5
## rho.S 0.4136 0.2237 0.4799 -7.8
## rho.T 0.9099 0.6090 0.9999 -18.1
## DIC p.d WAIC p.w LMPL
## 496887.000 2147.925 504149.917 6642.962 -249609.718
## loglikelihood
## -246295.575
outtmp<-outlierCARBayesST(modelin=model[[1]],datain=model[[2]],threshold=4,trait="plantHeight")
The output report can be over-sized (more than 1Mb), for size of sub-directories in packages purposes, I choose to represent only the first genotypes…
mygeno<-as.character(unique(model[[2]][,"genotypeAlias"])) mygeno<-mygeno[1:6] for (i in seq(1,length(mygeno),by=15)){ myvec<-seq(i,i+14,1) plotCARBayesST(datain=model[[2]],outlierin=outtmp,myselect=myvec,trait="plantHeight",xvar="thermalTime") }
## R version 4.0.2 (2020-06-22)
## Platform: x86_64-w64-mingw32/x64 (64-bit)
## Running under: Windows 10 x64 (build 18363)
##
## Matrix products: default
##
## locale:
## [1] LC_COLLATE=French_France.1252 LC_CTYPE=French_France.1252
## [3] LC_MONETARY=French_France.1252 LC_NUMERIC=C
## [5] LC_TIME=French_France.1252
##
## attached base packages:
## [1] stats graphics grDevices utils datasets methods base
##
## other attached packages:
## [1] openSilexStatR_1.1.0 dplyr_1.0.2 lubridate_1.7.9
##
## loaded via a namespace (and not attached):
## [1] tidyr_1.1.2 splines_4.0.2 dotCall64_1.0-0 gtools_3.8.2
## [5] assertthat_0.2.1 expm_0.999-5 CARBayesdata_2.2 sp_1.4-2
## [9] stats4_4.0.2 yaml_2.2.1 LearnBayes_2.15.1 truncdist_1.0-2
## [13] pillar_1.4.6 backports_1.1.9 lattice_0.20-41 glue_1.4.2
## [17] digest_0.6.25 RColorBrewer_1.1-2 colorspace_1.4-1 plyr_1.8.6
## [21] htmltools_0.5.0 Matrix_1.2-18 pkgconfig_2.0.3 raster_3.3-13
## [25] CARBayesST_3.1 gmodels_2.18.1 purrr_0.3.4 scales_1.1.1
## [29] gdata_2.18.0 tibble_3.0.3 farver_2.0.3 generics_0.0.2
## [33] ggplot2_3.3.2 ellipsis_0.3.1 magrittr_1.5 crayon_1.3.4
## [37] deldir_0.1-28 memoise_1.1.0 evaluate_0.14 GGally_2.0.0
## [41] fs_1.4.2 nlme_3.1-148 MASS_7.3-51.6 foreign_0.8-80
## [45] truncnorm_1.0-8 class_7.3-17 data.table_1.13.0 tools_4.0.2
## [49] shapefiles_0.7 lifecycle_0.2.0 matrixStats_0.56.0 stringr_1.4.0
## [53] munsell_0.5.0 compiler_4.0.2 pkgdown_1.5.1 e1071_1.7-3
## [57] evd_2.3-3 rlang_0.4.7 classInt_0.4-3 units_0.6-7
## [61] grid_4.0.2 rstudioapi_0.11 htmlwidgets_1.5.1 spam_2.5-1
## [65] crosstalk_1.1.0.1 labeling_0.3 rmarkdown_2.3 SpATS_1.0-11
## [69] boot_1.3-25 testthat_2.3.2 gtable_0.3.0 codetools_0.2-16
## [73] reshape_0.8.8 DBI_1.1.0 R6_2.4.1 gridExtra_2.3
## [77] knitr_1.29 rgdal_1.5-16 rprojroot_1.3-2 spdep_1.1-5
## [81] KernSmooth_2.23-17 desc_1.2.0 matrixcalc_1.0-3 stringi_1.4.6
## [85] Rcpp_1.0.5 vctrs_0.3.4 sf_0.9-5 leaflet_2.0.3
## [89] spData_0.3.8 tidyselect_1.1.0 xfun_0.16 coda_0.19-3