fitCARBayesST.Rd
a function to model curves using a spatio-temporal bayesian modelling using CARBayesST
library
fitCARBayesST( datain, xvar, trait, k = NULL, graphDist, burnin = 500, n.sample = 1500, formulaModel, typeModel = "anova", verbose )
datain | input dataframe of parameters |
---|---|
xvar | character, time variable (ex: thermalTime) |
trait | character, parameter of interest (ex: plantHeight) |
k | numeric, number of nearest neighbours to be returned |
graphDist | logical, display distance graph |
burnin | The number of MCMC samples to discard as the burn-in period |
n.sample | The number of MCMC samples to generate |
formulaModel | A formula for the covariate part of the model using the syntax of the lm() function. see |
typeModel | character, choice of the model, |
verbose | logical FALSE by default, if TRUE display information about the progress |
a list with a spatio-temporal object (CARBayesST) and a dataframe of the formated data
the input dataset must contain Position,Line,Ref,scenario,genotypeAlias columns. The function is not generic and needs specific columns names in the input data set. Please have a look of the struture of the data set used in the example.
CARBayesST
, ST.CARanova
and spdep
#> #>#>#> #>#>#> #>#> 'data.frame': 45342 obs. of 14 variables: #> $ Ref : Factor w/ 1680 levels "manip1_10_10_WW",..: 131 131 131 131 131 131 131 131 131 131 ... #> $ experimentAlias: Factor w/ 1 level "manip1": 1 1 1 1 1 1 1 1 1 1 ... #> $ Day : Factor w/ 42 levels "2013-02-01","2013-02-02",..: 3 4 5 6 7 9 9 10 11 12 ... #> $ potAlias : int 1 1 1 1 1 1 1 1 1 1 ... #> $ scenario : Factor w/ 2 levels "WD","WW": 2 2 2 2 2 2 2 2 2 2 ... #> $ genotypeAlias : Factor w/ 274 levels "11430_H","A310_H",..: 165 165 165 165 165 165 165 165 165 165 ... #> $ repetition : int 1 1 1 1 1 1 1 1 1 1 ... #> $ Line : int 1 1 1 1 1 1 1 1 1 1 ... #> $ Position : int 1 1 1 1 1 1 1 1 1 1 ... #> $ thermalTime : num 1.29 2.65 3.98 5.32 6.66 ... #> $ plantHeight : num 140 151 213 239 271 ... #> $ leafArea : num 0.018 0.019 0.0208 0.0222 0.0235 ... #> $ biovolume : num 0.253 0.62 1.201 1.68 3.396 ... #> $ Repsce : Factor w/ 15 levels "1_WD","1_WW",..: 2 2 2 2 2 2 2 2 2 2 ...test<-fitCARBayesST(datain=mydata,xvar="thermalTime", trait="plantHeight",k=2, graphDist=TRUE,burnin=10,n.sample=110, formulaModel=as.formula(plantHeight~scenario+genotypeAlias), typeModel="anova",verbose=FALSE)#> [1] 22.35558#> used (Mb) gc trigger (Mb) max used (Mb) #> Ncells 3713681 198.4 6893817 368.2 3713681 198.4 #> Vcells 67183832 512.6 211775864 1615.8 67183832 512.6