graphical function to produced the modelled smoothing and detected outliers for each curve of a dataset using a local regression --- Input:

plotDetectPointOutlierLocFit(datain, resuin, myparam, mytime, myid)

Arguments

datain

input dataframe. This dataframe contains a set of time courses

resuin

input dataframe of results from funcDetectPointOutlierLocFit function.

myparam

character, name of the variable to model in datain (for example, Biomass, PH or LA and so on)

mytime

character, name of the time variable in datain which must be numeric

myid

character, name of the id variable in datain

Value

graphics

Details

see locfit() help function from the locfit R library

see funcDetectPointOutlierLocFit function

Examples

library(locfit) selec<-c("manip1_1_1_WW","manip1_1_2_WW","manip1_1_3_WW") mydata<-plant1[plant1[,"Ref"] %in% selec,] resu<-FuncDetectPointOutlierLocFit(datain=mydata, myparam="biovolume",mytime="thermalTime", myid="Ref",mylevel=5,mylocfit=70) plotDetectPointOutlierLocFit(datain=mydata,resuin=resu,myparam="biovolume", mytime="thermalTime",myid="Ref")
#> Warning: Removed 8 rows containing missing values (geom_point).